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Abstraci

Any attempt to introduce automation into the monitoring of complex
physical systems must start from a robust anomaly detection capability. This
task is far from straightforward, for a single definition of what constitutes an
anomaly is difficult to come by. In addition, to make the monitoring process
efficient, and to avoid the potential for information overload on human
operators, attention focusing must also be ‘addressed. When an anomaly
occurs, more often than not several sensors are affected, and the partially
redundant information they provide can be confusing, particularly in a crisis
situation where a response is needed quickly.

‘1’hc focus of this paper is a new technique for attention focusing. The
technique involves reasoning about the distance between two frequency
distributions, and is used to detect both anon]alous system parameters and
“broken” causal dependencies. These two forms of information together
isolate the locus of anomalous behavior in the system being monitored.

1 Introduction

Mission Operations personnel at NASA have the task of determining, from mo-
ment to moment, whether a space platform is exhibiting behavior which is in any
way anomalous, which could disrupt the operation of the platform, and in the
worst case, could represent a loss of ability to achieve mission goals. A tradi-
tional technique for assisting mission operators in space platform health analysis is
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the establishment of alarm thresholds for sensors, typically indexed by operating
mode, which summarize which ranges of sensor values imply the existence of
anomalies. Another established technique for anomaly detection is the compari-
son of predicted values from a simulation to actual values rcccived  in tclcmctry.
However, experienced mission opqrators  reason about more than alarm threshold
crossings and discrepancies between predicted and actual to detect anomalies:
they may ask whether a sensor is behaving differently than it has in the past,
or whether a current behavior may lead to-the particular bane of operators—a
rapidly developing alarm sequence.

Our approach to introducing automation into real-time systems monitoring
is based on two observations: 1) mission operators employ multiple methods for
recognizing anomalies, and 2) mission operators do not and should not interpret all
sensor data all of the time. We seek an approach for determining from moment to
moment which of the available sensor data is most informative about the presence
of anomalies occurring within a system, The work reported here extends the
anomaly detection capability in Doyle’s SELMON monitoring system [3, 4] by
adding an attention focusing capability.

Other model-based monitoring systems include Dvorak’s MIMIC, which per-
forms robust discrepancy detection for continuous dynamic systems [5], and Dc-
Coste’s  DATMI , which infers system states from incomplete sensor data [2]. This
work also complements other work within NASA on empirical and model-based
methods for fault  diagnosis of aerospace platforms [1,6, 7, 8].

2 Attention Focusing

A robust anomaly detection capability provides the core for monitoring, but only
when this capability is combined with attention focusing does monitoring be-
come both robust and efficient. O(hcrwise, the potential problems of information
overload and too many false positives may defeat the utility of the monitoring
system.

The attention focusing technique developed here uses two sources of informa-
tion: historical data describing nominal system behavior, and causal information
describing which pairs of sensors are constrained to be correlated, due to the pres-
ence of a dependency. The intuition is that the origin and extent of an anomaly can
bc determined if the misbehaving system parameters and the misbehaving causal,
dependencies can be determined. Such information also supports reasoning to
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Figure 1: Anomalous System Parameters, Sensors and Mechanisms.

distinguish whether sensors, system parameters or mechanisms are misbehaving
due to the fact that the signature of “broken” nodes and arcs in the causal graph
are distinguishable. See Figure 1.

For example, the expected signature of ananornalous sensor includes the node
of the sensor itself and the immediately adjacent arcs corresponding to the causal
dependencies that the sensor participates in directly. The intuition is that the actual
system is behaving normally so the locus of “brokenness” is isolated to the sensor
and the set of adjacent causal dependencies which attempt to reconcile the bogus
value reported by the sensor.

The expected signature of an anomalous system parameter also includes nodes
and arcs which are downstream in the causal graph from the node corresponding
to the system parameter. The intuition here is that the misbehavior, being in the
actual system, will propagate.

The expected signature of an anomalous mechanism also includes arcs and
nodes causally downstream from the arc corresponding to the mechanism. Once
again, the intuition is that the misbehavior is in the system itself, and it will
propagate. The way to distinguish this case from the anomalous system parameter
case is to examine all
causally prior node in

input arcs (assuming there are more than one) to the most
the “broken” subgraph.
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2.1 Two Additional Measures

While SEI,MON  runs, it computes incremental frequency distributions for all sen-
sors being monitored. These frequency distributions can be’ saved as a method
for capturing behavior from any episode of interest. Of particular interest are
historical distributions which correspond to nominal system behavior.

To identify an anomalous sensor, we apply a distance measure, defined below,
to the frequency distribution which represents recent behavior to the historical
frequency distribution representing nominal behavior, We call the measure simply
disfance. To identify a “broken” causal dependency, we first apply the same
distance measure to the historical frequency distributions for the cause sensor and
the effect sensor. This reference distance is a weak representation of the correlation
that exists between the values of the two sensors due to the causal dependency.
This reference distance is then compared to the distance bctwccn  the frequency
distributions based on recent data of the same cause sensor and effect sensor. The
difference between the reference distance and the recent distance is the measure of
the “brokenness” of the causal dependency. We call this measure causal distance.

2.2 Desired Properties of the Distance Measure

Define a distribution, D as the vector di such that

Vi, O<di<l

and
n - 1

~di=l
i=()

For a sensor S, we assume that the range of values for the sensor has been
partitioned into n contiguous subrangcs  wh~ch exhaust this range. We construct
a frequency distribution as a vector Ds of length n, where the value of di is the
frequency with which S has displayed a value in the ith subrange.

If our aim was only to compare different frequency distributions of the same
sensor, we could use a distance measure which required the number of partitions,
or bins in the two distributions to be equal, and the range of values covered by the
distributions to be the same, However, since our aim is to be able to compare the
frequency distributions of different sensors, these conditions must be relaxed.

Before defining the other desired properties of the distance measure, we define
two special types of frequency distribution. Let F be the random, or flat distribution

4



where Vi, d i = ~. Let Si bc the set  of “spike” distributions where d i = 1 and
Vj#i, dj~O.

We seek a distance measure for frequency distributions with the following
properties:

Distance
VD1D2, A(D1, D2) ~ O
This property merely defines the measure as a distance measure.

Identity
VD, A(D, D) = O

Syrnme&y
VDIDZ, A(D1, Ilz) = A(llz, Dl)
We do not wish to emphasize whether we are comparing recent data to historical

data or vice versa, or cause data to effect data or vice versa.

D i s t i n c t n e s s
VD1, D2, if D1 # D2, therzA(D1) D2) >0
The distance measure should distinguish distinct frequency distributions.

Spike Distinctness
Vi # j, A(Si, Sj) >0
We wish the set of Si to bc distinguishable.

Spike Ordering
Vij A(Sit Si+l) < A(Si, Si+.z)
The distance measure should preserve the fact that there is an ordering on the

bins.

spike  Equidistance
Vi #j, A(Si) Si+ ]) = A(sj,  Sj+-])

There should be no difference in weighting of the spike distributions.

Spike/Flat Equidistance
Vi # ~, A(Si, J’) = A(Sj, F)
The difference between any spike distribution and the flat distribution is to be

the same.

ZMrerna VD1D2Vi, A(DI, D2) < A(Sij F)
Any spike distribution and the flat distribution

different. All other distributions fall in between.
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2.3 TJIC Distance Measure

The distance measure is computed by projecting the two distributions into the
two-dimensional space [j,s] in polar coordinates and taking tlie cuclidian  distance
bctwccn the projections,

Define the “flatness” component \(D) of a distribution as follows:

This is simply the sum of the bin-by-bin differences bctwccn the given distri-
bution and F’. Note that O < j(D) < 1. Also, j(Si) + 1 as n + W.

Define the “spikeness”  component s(D) of a distribution as:

This is simply the centroid  value calculation for the distribution. The weighting
factor @ will be explained in a moment, Once again, O < s(D) <1,

Now take [f,s] to be polar coordinates [r, 0]. This maps F to the origin and
the Si to points along an arc on the unit circle., See Figure 2.

By inspection, the Spike Distinctness, Spike Ordering and Spike/Flat Eguidis-
tancc properties are satisfied. The Spike Equidistance property is “satisfied because
there is no unequal weighting applied in the centroid calculation, The Distance,
Identity and Symnefry  properties follow from taking the euclidian  distance be-
tween the projections of the distributions. The Extrema property is satisfied by
taking ~ = ~. This choice of # guarantees that A(SO, Sn_l) = A(F,  SO) =
A(F, S,,- 1 ) = 1 and all other distances in the region which is the range of A are
b y  i n s p e c t i o n  <1.

The Distinctness property is not satisfied by the function A(DI, D2). This is
not surprising because the multi-dimensional space arising from the number of
bins in a distribution is collapsed to a two-dimensional space [~, s]. (Consider
any two distributions D1, D2 with the same even number of bins such that the
frequencies in the first ~ bins and the frequencies in the second ~ bins both sum to
0.5 in both D1 and Dz. These two frequency sets within each distribution may bc
exchanged and/or permuted without violating A(DI, D2) = O). Thoughts on how
to address this limitation appear below.
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Figure 2: The function A(DI,  Dz).

Insensitivity to the number of bins in the two distributions and the range of
values encoded in the distributions is provided by the [~, s] projection function,
which abstracts away from these properties of the distributions.

We may note in passing that the distance measure described here maybe easily
modified to apply to continuous distributions, when theoretical models of the
behavior of a system are available, The centroid  calculation of the s component
is easily accomplished, and the f component involves merely the integral of a
difference, which may be accomplished numerically if necessary.

2 . 4  Rcsuh

In this section, we report on the results of applying the distribution distance measure
to the task of focusing attention in monitoring. The distribution distance measure
is used. to identify misbehaving nodes (distance) and arcs (cazMul  distance) in the
causal graph of the system being monitored, or equivalently, detect and isolate the
extent of anomalies in the system being monitored,

2.4.1 A Space Shuttle Propulsion Sulxystcm

Figure 3 shows a causal graph for a portion of the Forward Reactive Control
System (FRCS) of the Space Shuttle. A full causal graph for the Reactive Control
System, comprising the Forward, Left and Right RCS, was developed with the
domain expert.
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Figure 3: Causal Graph for the Forward Reactive Control System (FRCS) of the
Space Shuttle.

2.4.2 Attention Focusing Examples

SELMON was run on seven episodes describing nominal behavior of the FRCS.
The frequency distributions collected during these runs were merged. Reference
distances were computed for sensors participating in causal dependencies.

SELMON was then run on 13 different fault episodes, representing faults such
as leaks, sensor failures and regulator failures. ‘IWO of these episodes will be
examined here; results were similar for all episodes, In each fault episode, and
for each sensor, the distribution distance measure was applied to the incremental
frequency distribution collected during the episode and the historical frequency
distribution from the merged nominal episodes. These distances were a measure
of the “brokenness” of nodes in the causal graph; i.e., instantiation of the distance
measure.

New distances were computed between the distributions corresponding to
sensors participating in causal dependencies. The differences between the new
distances and the reference distances for the dependencies were a measure of the
“brokenness” of arcs in the causal graph; i.e., instantiation of the causal distance
measure.

The first episode involves a leak affecting the first and second manifolds Qets)
on the oxidizer side of the FRCS. The pressures at these two manifolds drop
to vapor pressure. The dependency between these pressures and the pressure in
the propellant tank is severed because the valve between the propellant tank and
the manifolds is closed. Thus there are two anomalous system parameters (the
manifold pressures) and two anomalous mechanisms (the agreement between the
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Figure 4: A leak fault,

propellant and manifold pressures when the valve is open).
The dislancc  and causal distance  measures computed for nodes and arcs in the

FRCS causal graph reilcct this faulty behavior. See Figure 4. (To visualize how the
distribution distance measure circumscribes the extent of anomalies, the coloring
of nodes and the width of arcs in the figure are correlated with the magnitudes
of the associated distance and causal  disfance scores). An explanation for the
apparent helium tank temperature anomaly is not available. However, we note that
this behavior was present in the data for all six leak episodes.

The second episode involves an overpressurization  of the propellant tank duc
to a regulator failure. Onboard software automatically attempts to close the valves
which isolate the helium tank from the propellant tank. One of the valves sticks
and remains open.

The distance and causal dislance  measures isolate both the’ misbehaving sys-
tcm parameters (propellant pressure and valve status indicators) and the altered
relationships between the helium and propellant tank pressures and between the
propellant tank pressure and the valve status indicators. Ovcrpressurization of the
propellant tank also alters the usual relation bctwccn  propellant tank pressure and
manifold pressures. See Figure 5.

3 Discussion

The dislame and causal distance measures based on the distribution distance
measure combine two concepts: 1 ) empirical data alone can bc an effcctivc
model of behavior, and 2) the cxistencc  of a causal dependency between two
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Figure 5: A pressure regulator fault,

parameters implies that their values are somehow correlated. The causal dis-
Iance measure constructs a model of the correlation between two causally related
parameters, capturing the general notion of constraint in an admittedly abstract
manner. Nonetheless, these models of constraint arising. from causality provide
surprising discriminatory power for determining which causal dependencies (and
corresponding system mechanisms) are misbehaving. (In the distance measure
for detecting misbehaving system parameters, wc are simply using the degenerate
constraint of expected equality between historical and recent behavior.)

The approach described in this paper has usability advantages over other forms
of model-based reasoning. The overhead involved in constructing the causal and.
behavioral model of the system is minimal. The behavioral model is derived
directly from actual data; no offline modeling is required. The causal model is of
the simplest form, describing only the existence of dependencies. For the Shuttle
RCS, a 198-node, 196-arc causal graph was constructed in a single one and one
half hour session between the author and the domain expert,

3.1 Anomaly Characterization

Most model-based reasoning work has focused on diagnosis, treating monitoring
as a “front-end”, with discrepancy detection usually chosen as the monitoring
technique. Our work suggests modifications to this view.

Monitoring is a complex, subtle and important task in its own right. The most
sophisticated diagnosis engine is of limited utility if it is unreliably invoked by a
weak anomaly detection module.

The monitoring/diagnosis distinction actually defines two poles of a contin-
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uum. At one end is anomaly detection. The goal of anomaly detection is simply
to determine if an anomaly exists. General models of what constitutes an anomaly
are utilized, with limited reference to explicit behavior modc]s. Reasoning is local
rather than global.

Next in the continuum is anomaly characterization. The goal here is to describe
the extent of anomalous behavior. Again, the use of explicit behavior models is
limited, but reasoning now encompasses a global view of the system. The anomaly
detection capability of SELMON and the attention focusing capability which is the
subject of this paper correspond to anomaly detection and anomaly characterization
as defined here.

Next comes fault isolation. Reasoning now is refined from anomaly extent
to anomaly source. Explicit bchvaior models may be used, but not explicit fault
.mode]s.

Finally comes full-fledged fault diagnosis, which includes an explanation of
how the proposed fault produced the anomalous behavior. Explicit fault models
may be referenced to verify hypotheses.

In actual real-time monitoring practice, operators perform anomaly detection
and characterization routinely, and fault isolation when enough information is
available to support their reasoning. Fault diagnosis is typically done off-line.

4 Future Work

Several issues need to be examined to continue the evaluation of the attention
focusing technique based on the distribution distance measure and its utility in
monitoring.

We need to understand the sensitivity of the technique to how sensor value
ranges are partitioned. Clearly the discriminatory power of the distribution distance
measure is related to the resolution provided by the number of bins and the bin
boundaries. The results reported here are encouraging for the number of FRCS
sensor bins were in many cases as low as three and in no cases more than eight.

We need to understand the suitability of the technique for systems which have
many modes or configurations. We would expect that the discriminatory power
of the technique would be compromised if the distributions describing behaviors
from different modes were merged, Thus the technique requires that historical
data representing nominal behavior is separable for each mode. If there are many
modes, at the very least there is a data management task. A capability for tracking
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mode transitions is also required. An unsupervised learning systcm which can
enumerate systcm modes from historical data and enable automated classification
would SOIVC this problem nicely.

We need to understand consequences of the Distinctness pmpcrty not being
satisfied by the distribution distance measure. Some distinct distributions arc
not being distinguished; of more. relevant concern is whether or not distributions
we wish to distinguish arc in fact being distinguished, The judicial introduction
of additional components (e.g., the number of local maxima in a frequency dis-
tribution) to the distribution projection space [~,s] may bc required to cnhancc
discriminability.

The discriminatory power of the causal dislance  measure might be enhanced
by retaining the flatness/spikeness  distinction. For many linear functions, dif-
ferent input distributions may map to value-shifted but similarly shaped output
distributions. In other words, the spikeness  component may vary while the flat-
ness component may be relatively invariant. It may bc possible to distinguish the
case where misbehavior is the result of bogus values being propagated through
still correctly functioning mechanisms.

It should be possible to describe the temporal (along with the causal/spatial)
extent of anomalies by incrementally comparing recent sensor frequency distribu-
tions calculated from a “moving. window” of constant length with static reference
frequency distributions.

5 Summary

We have described the properties and performance of a distance measure used to
identify rnisbchavior  at sensor locations and across mechanisms in a system being
monitored. The technique enables the locus of an anomaly to bc determined.
This attention focusing capability is combined with a previously reported anomaly
detection capability in a robust, efficient and informative monitoring system, which
is being applied in mission operations at NASA.
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